

Emerging Technologies in Sample Analysis

4 April 2002

New England Bioterrorism Preparedness Workshop

MIT Lincoln Laboratory

Bernadette Johnson (781)981-1902 bernadette@ll.mit.edu

MS-15453

This work was sponsored under Air Force contract F19628-00-C-0002. The views expressed are those of the Author and do not reflect official policy or position of the United States Government.

MIT Lincoln Laboratory

Report Documentation Page		
Report Date 04APR2002	Report Type N/A	Dates Covered (from to) 03APR2002 - 04APR2002
Title and Subtitle Emerging Technologies in Sample Analysis		Contract Number F19628-00-C-0002
		Grant Number
		Program Element Number
Author(s) Johnson, Bernadette		Project Number
		Task Number
		Work Unit Number
Performing Organization Name(s) and Address(es) MIT Lincoln Laboratory		Performing Organization Report Number
Sponsoring/Monitoring Agency Name(s) and Address(es) Air Force ESC/XPK (Richard Axtell) Hanscom AFB, MA 01731		Sponsor/Monitor's Acronym(s)
		Sponsor/Monitor's Report Number(s)
Distribution/Availability S Approved for public release		
	lew England Bioterrorism Pr ton, MA, The original docur	eparedness Workshop held 3-4 april 2002 at MIT nent contains color images.
Abstract		
Subject Terms		
Report Classification unclassified		Classification of this page unclassified
Classification of Abstract unclassified		Limitation of Abstract SAR
Number of Pages		'

Outline

- Current techniques in sample analysis
 - Clinical (subject of yesterday's talk)
 - Environmental
- Challenges associated with environmental sampling
- Examples of technologies in use and in development

CDC's Sample Analysis Guidelines

(example: B. Anthracis)

- Persons suspected of exposure/infection
 - Cultures of blood and spinal fluid
 - Cultures of tissues or fluids from affected areas
 - Microscopic examination
 - PCR
 - Nasal swab (occasionally for exposure, but not for diagnosis)
 - Antibody testing (exposure, not validated for diagnosis)
- Environmental contamination
 - Cultures of air samples, surface swabs, suspicious powders
 - Microscopic examination of suspect material
 - Evaluation of growth properties of suspect agent
 - PCR
 - DFA (direct fluorescent assay) to detect key bacterial proteins
 - Specialized tests, such as immunoassays (SMART)

How Do These Techniques Compare?

Response Time

Orthogonal ID Confirmation Technologies

Polymerase Chain Reaction (PCR)

Chemical multiplication of DNA (x106)

- Selectivity from sequence-specific DNA/RNA recognition
- Enzymatic amplification provides superb sensitivity

1-4 hrs

Culture-based assays

- Traditional method since Pasteur – still "gold standard" for ID
- Viable organisms
 replicated in culture and
 identified using
 biochemical assays and
 microscopy

1-3 days

Sensitivity/Accuracy

MIT Lincoln Laboratory

Examples of In-use and Developmental Immunoassay Devices

Ticket cartridges and reader for lateral-flow immunoassay in Joint Biological Point Detection System (JBPDS)

Response Equipment Co. Bio-HAZ Biodetector

Features of Immunoassay Analysis

- Can be used on environmental samples with little or no preparation
- Readout is fast (~ 15 minutes) and simple (colorimetric or fluorimetric)
- Sensitivity modest (~10,000 100,000 particles)
 - Depends on antibody-antigen binding affinity and readout scheme
- Specificity reasonably good
 - Depends on antibody construct and antigen specificity
- Current IAs are not multiplexed; development of protein microarrays may lead to sensitive, multi-assay analysis tools

Examples of Existing Protein Microarrays

Phylos (2000 element)

Covalent derivatization

Ciphergen (multiple classes of proteins)

Zyomyx (10,000/cm²)

- Protein microarray technology development driven by drug screening and disease-marker investigations
 - Diagnostics (clinical and environmental) still developmental

Developmental Antibody-Based Sensor: CANARY

Concept

B cell emits ~200 photons within 30 seconds after bioagent binding

Tests Against Killed Tularemia (Collab. with NMRC)

Prototype microcentrifuge device

Status of B-Cell Lines

CompleteIn developmentFMDVCoxiella burnettiVEEBacillus anthracisVibrio choleraE. coli O157:H7Orthopox viruses

Yersinia pestis
Brucella spp

Francisella tularensis

PCR-Based Analysis Tools

Systems being developed (and deployed) that provide agent ID within 30 minutes of introduction of prepared sample

SmartCycler XC System - Cepheid

Example of handheld PCR device

HANAA - Handheld Nucleic Acid Analyzer, developed by LLNL, Cepheid, and ETG, Inc.

- Challenge remains in automating sample preparation and analysis
 - Pathogen cells or spores must be ruptured to liberate the DNA/RNA
 - DNA/RNA must be separated from protein debris/environmental impurities

Overview of Sample Preparation

5) Signal Analysis and Readout

Target Concentration: Affinity Magnet Protocol

DNA Purification: Simple Nucleic Acid Prep (SNAP)

- Chemically treated paper is the key component of SNAP
- Lyses cells, binds PCR-assay inhibitors, and purifies DNA
- Advantages:
 - Fast and easy (1/5th the time of other published protocols)
 - Water is only added reagent (no phenol, chloroform, or alcohol)
 - Lightweight, compact, enables archiving
 - On-site fixation: preserves DNA & kills pathogenic organisms

Lincoln Interim Nucleic-acid Kit (LINK)

(Developed in response to October 2001 events)

LINK as a solution:

- Incorporates SNAP paper but in a more user-friendly format
- Faster processing than basic SNAP
- Easier to sample, handle, and process
- Enables on-site fixation
- Outside can be decontaminated
- 6 minute processing time
- Single-step processing
- Results equal to or better than basic SNAP

How to Use LINK

1) Apply sample Sit for 5 minutes

2) Process in one step

3) Remove DNA
Total time ~6 minutes!

LINK Cartridge Works with Varied Samples

LINK detection from:

- Portal Shield air-to-liquid samples seeded with vegetative bacteria
- Untreated domestic sewage (Boston) seeded with vegetative bacteria
- Paper, envelopes, skin seeded with bacterial spores
- Air impaction with dry bacterial spores

What About DNA Microarrays?

- DNA Microarray: Any 2D or 3D substrate having many (~ 10²-10⁵) different nucleic-acid capture sites (probes)
- Can identify both strain and drug resistance of pathogens
- Can offer highly multiplexed assay capability

Pathogen Identification via DNA Microarray

- Detect small amounts (<100 copies per ml) of pathogenspecific nucleic acids in environmental sample
- Arrays might provide log orders more information than current PCR-based approaches (e.g.TaqMan)
- Challenges for diagnostic applications:
 - Never demonstrated for environmental (or clinical) samples
 - Amplification may be necessary before micro-array assay
 - Sample preparation required (as in PCR techniques)

Assay Times for Current and Emerging PCR/DNA Systems

1 –2 Hours

•Cepheid PCR
•Roche PCR

Host Genotyping

10's expressed RNAs10's pathogen genes

2-4 Hours
MICROARRAYS

Expression ProfilesHost Genotyping100's Pathogen genes (*)

(*) w/ PCR

12+ Hours MICROARRAYS

Expression ProfilesHost Genotyping1000's Pathogen genes (#)

(#) w/culture

Summary

- Environmental sample analysis parallels methodology developed for clinical sampling
 - Immunoassays for rapid estimate of exposure (not yet CDC authorized)
 - PCR techniques being deployed in some laboratories to provide strain specificity and drug resistance
 - Culture still used to provide "gold standard" for pathogen ID
- New technology developments could greatly increase the speed, sensitivity, and multiplicity of environmental assays
 - Protein microarrays could offer highly multiplexed, rapid ID capability on collected samples
 - DNA microarrays could offer hundreds to thousands of pathogen tests on single-chip format, provided sample preparation can be made compatible